Math Trig
Euler’s formula states:
eiθ=isinθ+cosθ
Proof
dθdeiθisinθ+cosθ=e−iθ(isinθ+cosθ)=(e−iθ)(isinθ+cosθ)′+(e−iθ)′(isinθ+cosθ)=(e−iθ)(icosθ−sinθ)−i(e−iθ)(isinθ+cosθ)=(e−iθ)(icosθ−sinθ)−(e−iθ)(icosθ−sinθ)=0
Therefore eiθisinθ+cosθ is a constant. Plug in θ=0, to get eiθisinθ+cosθ=1. Multiply both sides by eiθ to get
eiθ=isinθ+cosθ
Euler’s Identity
Plug θ=π into Euler’s Formula
eiπ=isinπ+cosπeiπ=−1
Trig Functions Redefined
Sine:
eiθ=isinθ+cosθ−e−iθ=−isin−θ−cos−θ−e−iθ=isinθ−cosθeiθ−e−iθ=2isinθsinθ=2ieiθ−e−iθ
Cosine:
eiθ=isinθ+cosθe−iθ=isin−θ+cos−θe−iθ=−isinθ+cosθeiθ+e−iθ=2cosθcosθ=2eiθ+e−iθ