Math Calculus
Proof
Let’s express a Fourier Series as:
v=P2πnxf(x)=n=0∑∞Ancosv+Bnsinv
We can deduce:
f(x)=n=0∑∞2Aneiv+Ane−iv−iBneiv+iBne−iv=n=0∑∞0.5(An+iBn)e−iv+0.5(An−iBn)eiv=n=0∑∞Pe−iv∫−P/2P/2f(x)(cosv+isinv)dx+Peiv∫−P/2P/2f(x)(cos−v+isin−v)dx=n=0∑∞Pe−iv∫−P/2P/2f(x)eivdx+Peiv∫−P/2P/2f(x)e−ivdx=n=−∞∑∞Peiv∫−P/2P/2f(x)e−ivdx
Definitions
Definitions of An and Bn:
Fourier Series Proof