Math Calculus
Represent function using power series:
f(x)=n=0∑∞cn(x−a)n
Find c0
c0=f(a)
Take derivative of function
dxdf(x)=n=0∑∞cn+1(n+1)(x−a)n
Find c1
c1=dxdf(a)
Take second derivative of function
d2xd2f(x)=n=0∑∞cn+2(n+1)(n+2)(x−a)n
Find c2
c2=2d2xd2f(a)
Take third derivative of function
d3xd3f(x)=n=0∑∞cn+3(n+1)(n+2)(n+3)(x−a)n
Find c3
c3=6d3xd3f(a)
Create general formula for nth element of c
cn=n!dnxdnf(a)
Create general formula for function as polynomial
f(x)=n=0∑∞n!dnxdnf(a)(x−a)n