Math Trig
sinx=22ieix−e−ix=2eix−e−ix=4ieix−(eix)−1=4i
Let u=eix:
u−u−1=4iu2−1=4iuu2−4iu−1=0u2−4iu−4=−3(u−2i)2=−3u−2i=±−3u=2i±−3u=i(2±3)
Substitute back into u, for n∈Z:
eix=i(2±3)ix=ln(i(2±3))ix=lni+2πn+ln(2±3)ix=2iπ+2πn+ln(2±3)x=2π−iln(2±3)+2πn